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Abstract

A new, fully three-dimensional, vortex-in-cell method designed to follow the unsteady motion of inviscid vortex sheets
with or without small (Boussinesq) density discontinuities is presented. As is common in front-tracking methods, the vor-
tex sheet is described by a moving, unstructured mesh consisting of points connected by triangular elements. Each element
carries scalar-valued circulations on its three edges, which can be used to represent any tangent vector value and in the
present method represent the element’s vorticity. As the interface deforms, nodes and elements are added and removed
to maintain the resolution of the sheet and of the vortex sheet strength. The discretization and remeshing methods allow
automatic, near-perfect conservation of circulation despite repeated stretching and folding of the interface. Results are
compared with previous experiments and simulations. Similarities are observed between the present simulations and exper-
iments of a vortex ring impacting a wall.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Vortex sheets are important in many areas of physics: they are generated on density discontinuities in mul-
tiphase flows through the action of gravity or shocks, are created by large-scale flow separation from bluff
bodies, and are a source of instability in transitional and turbulent flows. Numerically predicting their com-
plex, unsteady dynamics, however, has been a continuing challenge.

Lagrangian vortex methods have received much attention in recent years as an alternative to traditional
grid-based Navier–Stokes and Euler solvers because of their immunity to numerical convective instability
and the availability of fast solvers. They also gain advantage if the volume of fluid with significant vorticity
magnitude is a small fraction of the total flow volume, as is the case with high Reynolds number flows. In these
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cases, the flow can be represented in a more compact form by vorticity than is possible with velocity. This fact
lends support to computational methods in vorticity variables.

The linear stability analysis of the vortex sheet equations shows that short-wavelength solutions have arbi-
trarily large growth rates (the Kelvin–Helmholtz instability), making the initial value problem ill-posed. Early
studies of vortex sheet motion using point-vortex particles resulted in seemingly random behavior after a finite
time [1] which was later shown to be singularity formation [2,3]. Desingularizing the vorticity allowed simu-
lations to progress past the time of singularity formation, making long-time analysis of vortex sheet motion
possible [4,5]. Regularized solutions have since been shown to approximate Navier–Stokes solutions for small
enough viscosity and regularization length [6,7]. Regularization in vortex methods is usually introduced into
Lagrangian methods by finite-sized vortex cores [4,5] and in Eulerian or hybrid Lagrangian–Eulerian methods
by grid interpolation and/or cancellation [8,9].

First to speed up the direct OðN 2Þ calculation of Lagrangian vortex dynamics was Christiansen [8], who
extended the cloud-in-cell technique [10] to vortex particles by solving a Poisson equation for streamfunction
on a temporary Eulerian grid. This vortex-in-cell (VIC) algorithm reduces the cost per time step to
OðN þM log2 MÞ, where N is the number of vortex elements and M is the number of cells in the grid. Couët
[11] demonstrated the first three-dimensional VIC method, which solved for the motion of vortex filaments to
study the evolution of vortex rings. Because the solution is computed on a grid, the finest scales of motion are
limited to the size of a cell.

The Lagrangian elements that represent the vorticity can take the form of particles, filaments, sheets, or
discrete volumes. The choice of discretization technique dictates the methods that must be used for operations
such as diffusion, remeshing to maintain accuracy, and accounting for vortex stretching.

The most popular discretization for two- and three-dimensional vortex methods has been particles. Parti-
cles require no neighbor connectivity information, simplifying programming effort. They can be remeshed
using a regular grid with only minor losses [12]. They support diffusion methods easily [13,14]. They suffer
from some drawbacks: the vortex stretching term must be accounted for by calculating the velocity gradient
at each particle location for each timestep [15], and frequent regridding must be done to prevent particle sep-
aration and the accompanying loss of accuracy. They cannot easily track surfaces of discontinuity.

Early research [16–18] recognized the algorithmic benefits of using connected segments in three dimensions
to represent vortex filaments. As the Lagrangian nodes move and separate, the segments connecting them
rotate and elongate. Kelvin’s circulation theorem states that the circulations on these segments do not change.
So, in filament methods the vorticity is automatically divergence-free, and circulation is conserved because the
filaments are transported with unchanged circulation. Filaments are easy to remesh along their length, and
‘‘filament surgery” can account for localized cancellation of oppositely-signed vorticity [16,19,20]. Unfortu-
nately, it becomes inefficient or computationally expensive to remesh in cross-filament directions, as would
be required to maintain resolution after diffusion, or when stretch acts perpendicular to the filaments [21],
or when a collection of separate filaments is used to represent a continuous vortex sheet [22–24].

Efficiently tracking vortex sheets in three dimensions, however, requires not only element connectivity in
two local dimensions, but a method to prevent excessive detail below the regularization length scale. Several
vortex sheet methods have been proposed, but few address all of these concerns.

A vortex sheet method can exist without remeshing [6,25], but would suffer from either limited applicability
to problems with low in-sheet strain or from lack of intermediate- to long-time simulation accuracy. Other
research introduced new methods for integrating the singular Biot–Savart kernel over a surface [26–28], but
the resulting dynamic vortex methods also do not provide for remeshing.

Brady et al. [29] maps the entire vortex sheet onto a parametric plane and performs global remeshing which
results in higher resolution in areas with high mean curvature. This does not allow long-time runs because
material sheets in unsteady flows quickly create areas of high curvature that could remain unresolved in reg-
ularized methods. The Eulerian level-set method of Harabetian et al. [9] performs global ‘‘remeshing” by
locating the vortex sheet with a scalar marker function that forces potentially-unphysical topology changes
when surfaces close to within one grid cell.

Lindsay and Krasny [21] remeshed vortex sheets by inserting either points along filaments or whole new
filaments, depending on the direction of strain. The requirement to insert a whole filament when only a portion
of its length may need the increased resolution is a source of inefficiency in this semi-local remeshing method.
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Fully-local remeshing is done by Knio and Ghoniem [30–32], whose method tracks a scalar layer with tri-
angular and quadrilateral elements while discretizing the vorticity as filaments. The local remeshing, though, is
performed only along the edges of the quadrilaterals. As such, the method will always create great numbers of
very thin elements because it can only efficiently adapt to strain perpendicular to the quadrilateral elements’
edges. This is similar to the method of Kaganovskiy [33].

The proposed method remeshes locally and avoids all of the above difficulties by using a triangular mesh
front-tracking method similar to [34] with a vorticity discretization scheme that can use either edge circula-
tions or bound vortex sheet strength where algorithmically advantageous.

Contributions of the present work include: (1) a new Lagrangian vortex sheet method for long-running sim-
ulations of complex flows, (2) introduction of a vortex sheet discretization method that conserves circulation
by design, (3) demonstration of a method for localized remeshing of vortex sheet geometry that is extensible to
non-manifold recoalescence, and (4) new results for three-dimensional vortex rings impacting a density inter-
face using an Euler method with regularization that compare favorably with previous physical and numerical
experiments.

This paper is structured as follows. In the section below, the basic equations of vortex sheet motion and
strength evolution are presented. Section 3 introduces the numerical method that solves these equations. Sec-
tion 4 shows the results obtained by applying the method to several fully three-dimensional flow problems and
discusses the conservation properties and other important aspects of the method. A summary of the results
appears in Section 5.

2. Governing equations for vortex sheet dynamics

The vectorial strength c of a three-dimensional vortex sheet separating inviscid fluids can be written as
c ¼ n̂� ðu1 � u2Þ ¼ n̂� Du; ð1Þ

where ui is the value of velocity on either side of the vortex sheet, and n̂ is the sheet’s local unit normal vector.
The vortex sheet strength is related to the vorticity by
x ¼ c dðnÞ; ð2Þ

where d is Dirac’s delta function, and n is the distance normal to the sheet.

If this sheet is situated on an interface between immiscible fluids of possibly different densities, and the
material marker velocities are equal to the average of the velocity on both sides of the sheet, then the evolution
equation for the incompressible, inviscid sheet strength with zero surface tension [25,27,35] is
Dc

Dt
¼ c � ruþ 2 A n̂� ð�a� gÞ; ð3Þ

�a ¼ Du

Dt
þ 1

4
DuþrDu; ð4Þ

D

Dt
� o

ot
þ u � r; ð5Þ
where �a is the average of the fluid acceleration on both sides of the vortex sheet, g is the gravity vector, and A,
the Atwood number, is equal to
A ¼ q2 � q1

q2 þ q1

: ð6Þ
This equation can be non-dimensionalized using the following quantities:
~t ¼ t
Ajjgjj

R

� �1
2

~c ¼ cðAjjgjjRÞ�
1
2;

~u ¼ uðAjjgjjRÞ�
1
2 er ¼ rR; ð7Þ
where R is a representative length scale.
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In the present method, it shall be assumed that the density jump is small (Dq=q� 1, thus A! 0) and that
the Froude number is large (or jjgjj ! 1), such that the coefficient of the baroclinic term is constant and
finite: Ajjgjj � h ¼ 1. Under these assumptions, the coefficient on the term representing baroclinic generation
due to hydrodynamic pressure is zero, and thus only hydrostatic pressure effects are treated. This is the Bous-
sinesq approximation. In this case, Eq. (3) becomes (without the ~� notation)
Dc

Dt
¼ 1

R2
c � ðruÞ � 2h n̂� g

jjgjj : ð8Þ
This is the governing equation for the evolution of the vortex sheet strength in three-dimensional flow. We
will show, in Section 3, how the very construction of the numerical method automatically satisfies the vortex
stretching term in this equation.

2.1. Velocity

The fluid velocity must be defined on the vortex sheet in order to convect it through the domain. The for-
mula governing the motion of a fluid by the action of a vortex sheet is
uðx; tÞ ¼ 1

4p

Z
S

cðS; tÞ � ðx� SÞ
jx� Sj3

dS: ð9Þ
An alternative method to compute the velocity uses the definition of vorticity ðx ¼ r� uÞ, the vector
identity
r2A ¼ rðr � AÞ � r �r� A; ð10Þ

and the assumption of incompressibility ðr � u ¼ 0Þ, to show that
r2u ¼ �r� x: ð11Þ

This formulation is more amenable to the combined Lagrangian–Eulerian solution method described in

Section 3.1.

3. Numerical method

As is common in three-dimensional front-tracking schemes, the front is discretized into flat triangles, each
defined by its connectivity to three Lagrangian nodes. In the present method, the edges of each triangular ele-
ment p store scalar-valued circulations Cp;1!3. The sum of the circulations multiplied by their respective edge
vectors Dlp;1!3 uniquely defines the vortex sheet strength cp of each element according to
cp ¼
1

ap

X3

i¼1

Cp;i Dlp;i; ð12Þ
where ap is the element area.
One Euler time step consists of the following substeps: interpolate element vorticity onto a grid, solve for

velocity, interpolate velocity back onto mesh nodes, move mesh nodes, generate baroclinic vorticity on each
element, remesh to maintain element quality and density. Time integration for all simulations in the present
work is carried out by an explicit second-order Runge–Kutta method, specifically Heun’s method. In this mul-
tistep method, the remeshing is done only once per time step: at the end of the forward integration and before
output. The method uses an adaptive step size corresponding to a Courant number of at least unity
jjujjmax Dt
Dx

P 1: ð13Þ
3.1. Velocity calculation

The velocity of the computational nodes is calculated from the vorticity field using Eq. (11). The vorticity
field is created from the current vortex sheet geometry and element strengths according to
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xðxÞ ¼
XN

p¼1

ap cp dðx� xpÞ; ð14Þ
where d is a regularized delta function.
In the present work, a three-dimensional version of Peskin’s function [36] is used as the particle-grid oper-

ator d. This version is simply a tensor product of three one-dimensional Peskin functions, and thus has a
strictly positive (though rectangular in two and three dimensions), support.
deðxÞ ¼
1
2e 1þ cos px

e

� �� �
: jxj 6 e

0 : jxj > e

�
; ð15Þ

dðx� xðsÞÞ ¼
Y

i

deðxi � xiðsÞÞ: ð16Þ
The function is C1 continuous and is second-order accurate when the kernel width e takes on values
½1; 1:5; 2; . . .�Dx. While the Peskin function is more costly to implement and can have a larger support than
other popular kernels, it offers benefits related to solution smoothness, long-time suppression of grid instabil-
ities, and better conservation of flow invariants. More details appear in [37].

The velocity field is computed by solving Eq. (11) once for each of the three velocity components on a tem-
porary, regular grid with boundary conditions arising from the type of domain boundary chosen (open, peri-
odic, or slip wall). The right-hand-side of this equation is computed using second-order centered and one-sided
derivatives of the vorticity field from (14). Modern fast Poisson solvers, which can use Fast Fourier Trans-
forms or multigrid methods, can solve this equation in OðM log2 MÞ or better time, where M is the number
of cells in the discretized volume. The HW3CRT solver from Fishpack [38] is used in the present method.

Upon evaluation of the velocity, the evolution of the marker node positions is determined by integrating
dxp

dt
¼ up; ð17Þ
where up is interpolated from the grid velocity using
upðxpÞ ¼
XM

j¼1

uj dðxp � xjÞ ð18Þ
and the same kernel used in (14).

3.2. Vorticity update

Because the vortex sheet strength of each element is stored as circulations on the triangle edges, and these
circulations are unchanged during the convection step, the vortex stretching term is satisfied automatically and
exactly.

The other term in the vortex sheet strength evolution Eq. (8) governs the strength change due to baroclinic
generation. Updating the edge circulations of the elements reduces to two simple steps. The first is to integrate
Dcp

Dt
¼ �2h n̂p �

g

jjgjj ð19Þ
forward in time within the convection step, where n̂p is constant on each triangular element and calculated
using the cross-product of two edge vectors. The second step is to convert the change in element vortex sheet
strength to a change in the circulations on the element edges. This is done by solving a set of equations equiv-
alent to the inverse of (12). The resulting change in edge circulations is added to the existing circulations on
that element’s edges.

3.3. Remeshing

In order to maintain constant mesh resolution and smoothness in the presence of strain, the sheet under-
goes local remeshing once every time step. This remeshing consists of two steps: splitting edges to maintain
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mesh resolution in areas of extensional strain and merging nodes to simplify mesh geometry and coalesce lay-
ers. Without this remeshing, elements would elongate beyond the capacity of the VIC grid to resolve them
smoothly, and elements would collect into zones with many thin, redundant triangles and parallel edges.

At every time step, all triangle edges whose length exceeds 0:8Dx are flagged for splitting. This step consists
of creating a new node at the midpoint of each long edge and then performing the following operations for
every triangle that shares that edge: (a) determine the vortex sheet strength of the original triangular element,
(b) logically split the original element into two child elements using the new node and (c) set the circulations on
the two child elements using the vortex sheet strength of the parent element and the areas and edge vectors of
the child elements according to the procedure described in Section 3.2. Because the triangle area and normal
stay constant throughout this process, circulation is exactly conserved. Note that this method allows local

sheet refinement, unlike schemes that use filaments to represent sheets, and allows efficient refinement in
any sheet-tangent direction, unlike quadrilateral-based remeshing schemes which are not efficient along their
diagonal. Local curvature can also be used to locate the new node [33,37]; this does not affect the conservation
properties of the splitting routine.

Were this the only remeshing process, the effect of compressional strain along either of the sheet tangential
axes would cause most elements to become elongated and very thin. A merging process combines nodes that
approach to within a threshold distance of each other (normally 0:2Dx). Nodes may be merged only with local
nodes within the same sheet (manifold or sheet merge), or with any close nodes, regardless of connectivity
changes (full merge). The merging procedure is composed of the following steps: (a) identify via a uniform,
binned, node search strategy node pairs within the threshold distance, (b) identify any elements that contain
both nodes in any node pair, (c) relocate the circulation from those elements’ edges onto the shared edges of
their neighboring elements, (d) merge the nodes into one node at their midpoint, (e) delete the elements iden-
tified in step (b), and (f) merge any element pairs that, after the merge, are composed of the same three nodes.
Because the scheme reorients the tangents of participating triangular elements, and the discretization allows
only in-plane vortex sheet strength, the scheme does not conserve total circulation. The amount of circulation
removed is typically very small, and the scheme behaves as a subgrid-dissipation step [37] in the same vein as
hairpin removal techniques [20].

No smoothing, ‘‘fairing,” or feature suppression is done on the mesh (as in [3,29]), nor is any smoothing
done on the strengths of the elements (as is done to suppress instabilities in [25]). Because of this, details
the size of the smallest unstable wavelength will spontaneously appear, making resolution convergence tests
with the same interpolation kernel impossible. Regardless, runs at different resolutions will retain very similar
overall behavior, though the small scales may appear different. In addition, simulations with identical non-
dimensional regularization produce identical results. Component and full-system validation tests of the
method appear in [37].

4. Results

The interaction between a vortex ring and a density interface is a complex test for three-dimensional vortex
sheet methods. Some examples of this problem include the interaction of a ship wake with a thermocline, the
collision of a thermal with an inversion layer, and the interaction of vorticity with a flame front.

Previous experimental studies of vortex ring interactions with sharp density interfaces appear in Linden [39]
(turbulent vortex rings) and Dahm et al. [40] (laminar rings). Numerical solutions from Tryggvason [41],
Dahm et al. [40] and Tryggvason et al. [42] use both two-dimensional and axisymmetric vortex sheet methods.
Results from a three-dimensional vortex sheet simulation appear in Tryggvason et al. [42], but no details are
presented. Related research treats the interface as a free surface instead of a finite density gradient [41–45], but
this typically requires a boundary element integral solution, which is not included in the present implementa-
tion. Marcus and Bell [46] present results from axisymmetric Navier–Stokes calculations for the non-Bous-
sinesq case. A three-dimensional vortex particle method was used by Liu [47,48] to study the normal
impact of a vortex ring into a wall. Other studies present physical and numerical experiments of the wall inter-
action case [49–53].

This problem can be described by four parameters: the diameter of the vortex ring D, its circulation C, the
Boussinesq coefficient h, and the regularization length scale d. Holding the core function constant, the four
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remaining quantities allow two similarity parameters: the non-dimensional regularization d� ¼ d=D and the
non-dimensional Boussinesq coefficient
Fig. 1.
on the
h� ¼ A
Fr
¼ AD3g

C2
: ð20Þ
Other variables have been normalized as follows: time t� ¼ tC=D2, length x� ¼ x=D, velocity u� ¼ uD=C and
vorticity x� ¼ xD2=C.

The problem involves a stable density interface extending to infinity in the horizontal dimensions (x and y),
but for the cases presented, an open domain with sufficient size is used. The computational domain thus has
bounds [�3:3] [�3:3] [�3:3] and free-space boundary conditions in all directions. The radially-symmetric
Peskin function is used for all particle-grid operations, and the filter radius is e ¼ 4, giving dPeskin ¼ 4Dx.
The regularization length scale for the subsequent runs is d� ¼ 0:2, which corresponds to a grid resolution
of Dx ¼ 1=20. Time steps were in the range 0:05 < Dt < 0:06.

The lack of a stabilizing influence such as viscosity or surface smoothing in inviscid regularized vortex sheet
motion allows instabilities with wavelengths greater than some multiple of the regularization length to grow
unchecked. This is especially noticeable when simulating vortex rings, as a grid- induced instability with azi-
muthal wavenumber k ¼ 4 tends to distort an initially circular ring into a square. This was first seen in vortex
filament studies of vortex rings [11]. Results from Section 4.1 are presented here in order to demonstrate this
distortion in a vortex sheet method. Fig. 1 shows the three-dimensional computational surface and the ring-
plane peak vorticity.

The numerical experiments of Dahm et al. [40] were of the axisymmetric or planar type, and thus allowed
no azimuthal instability, despite being regularized inviscid methods. The computational boundaries could then
be set much closer to the active areas of the flow. The only effects of reducing the horizontal domain from 8 to
4 diameters were a subtle thinning of the resultant sheet structure in the horizontal direction and a change in
the elevation of the density layer at the boundaries. The domain size for the present simulations ð6DÞ was cho-
Interface positions (left) and x–y plane jxj column maxima (right) for case with h� ¼ 0:0; t� ¼ ½0; 2; 4; 6; 8�; d� ¼ 0:2, for the images
right jx�j > 10 is solid.
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sen as a compromise between the growth rate of the k ¼ 4 instability seen in Fig. 1 and the available compu-
tational resources.

4.1. No baroclinic generation

For the sake of comparison with subsequent simulations, and to provide a control of the simulation param-
eters, a case is run with a passive interface ðh� ¼ 0Þ. The laminar vortex ring in these simulations formed from
an initially cylindrical tube D=2 long with uniform circumferential vortex sheet strength c ¼ 2êh. The sheet
dynamics and vorticity field corresponding to this case can be seen in Fig. 2. The initially cylindrical ring rolls
up into a thick-cored vortex ring as early as t� ¼ 2 and the vorticity distribution across the ring minor radius is
similar to that of thick-cored rings: never symmetric and always favoring the inner side.

For the given regularization length scale, it takes about three turns for most of the vorticity in the cylinder
to roll up into a smooth vortex core. The distribution of vorticity inside this core, seen in Fig. 2, resembles a
Gaussian [54,55], which is also demonstrated in ([37], Fig. 4.4). Numerical comparisons to Fraenkel’s thin-
cored [56] or Norbury’s family of thick-cored vortex rings [57] were not made.

Several parameters from this test appear in Fig. 3. First, the vertical extent of the computational elements
indicates the maximum penetration of the vortex ring into the density interface. It is not surprising that the
lowest point on the interface accelerates downward and continues at a nearly constant rate, as it is pushed
by a constant-strength vortex ring. The highest point on the mesh in this case corresponds to the remainder
of the horizontal interface that is not entrained and remains at its initial altitude. Next, the vertical velocity of
the center of vorticity shows a stable but oscillating vortex ring velocity of u�z ’ 0:4. Applying Helmholtz’s
equation for the velocity of a thin-cored vortex ring
Fig.
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returns a core (minor) radius of r ’ 0:25, which corresponds to the radius at which the vorticity has dropped
to 10% of its peak. The vortex ring maintains nearly constant circulation throughout the simulation. The total
circumferential circulation is not expected to stay constant for subsequent cases with h� > 0, as the downward
distortion of the density interface should create counter-circulation.

4.2. Thin interface

In the following simulations, the same vortex ring from the above non-baroclinic case is ejected perpendic-
ular to a single regularized density discontinuity of uniform strength. The strength of this discontinuity is mea-
sured by the Boussinesq coefficient, which takes on values h� ¼ ½0:03; 0:1; 0:3; 1:0; 3:0�. Similar simulations of
oblique impacts are presented in [37].

These are the three-dimensional analogues of simulations in Dahm et al. [40] that used a two-dimensional
vortex pair formed from a circular vortex sheet. Previous studies [58,59] show that those conditions result in a
thick-cored vortex pair while the present method creates rings with a ‘‘thin” core.

Cross-sections in the x–z plane of both the computational surface and the normal vorticity xy appear in
Figs. 4–9. From this series of images, the effect of the density interface on the vortex ring can be easily seen. In
the case of the weakest density jump (h� ¼ 0:03, Fig. 4), the vortex ring behaves nearly identically to the non-
baroclinic case in Fig. 2, except for the generation of weak oppositely-signed vorticity along the walls of the
cavity pushed out by the vortex ring. The final frame in that series shows that a small amount of the vortex
ring outer layer is finally peeled off by that counter-signed vorticity. Using an argument based on energy bal-
ance, it can be reasoned that had the simulation run longer, the vortex ring would eventually slow and reverse
its downward motion.

The h� ¼ 0:1 case in Fig. 5, having a density interface three times stronger than the weakest case, exhibits
significantly increased counter-rotating vorticity along the cavity walls. This causes vorticity from the vortex
ring to be stripped away earlier than the previous case (by t� ¼ 8) and also causes the highest rebound of any
of the cases tested. It is clear that this high rebound (seen at t� ¼ 10) is allowed because the amount of counter-
vorticity is significant but not so large that it disallows the main vortex ring from penetrating at all. Thus, the
counter-rotating vortex ring is free to travel upwards, not significantly hindered by the primary vortex ring.
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Fig. 6. Rendered vortex sheet surface at t� ¼ 10 for h� ¼ ½0:0; 0:03; 0:1�, d� ¼ 0:2.
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The backflowing jet is also unstable to waves of the Kelvin–Helmholtz style, though a complete roll is not
observed. This is very similar to the behavior in the experiments and numerical results in ([40], Figs. 5, 9, 14).
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Unlike the previous cases with relatively weak density layers, when h� ¼ 0:3 the vortex ring does not pen-
etrate the interface (Fig. 7). Instead, it pulls together portions of the density interface to form a second vortex
ring with smaller circulation and opposite sign. The second ring, being weaker, does little to disturb the pri-
mary vortex ring from its stable position just above the initial level of the density layer. The primary vortex
ring then proceeds to gather a second counter-rotating vortex ring from t� ¼ 6! 8 while the first continues
around the top of, and into the middle of the primary ring. All of this oppositely-signed vorticity slowly weak-
ens the primary vortex and concurrently creates new vortex rings farther from the axis, each with circulation
opposite the previous ring. This repeating creation of vortex rings is similar in nature to the repeated pairings
encountered in simulations of viscous vortex dipoles impinging on a no-slip wall [60]. The dynamics of this
case are similar to the experiments in ([40], Figs. 4, 7, 11, 17).

The behavior of the h� ¼ 1:0 and h� ¼ 3:0 cases, appearing in Figs. 8 and 9, are remarkably similar, though
different in degree. These two cases with the strongest density interface (still using the Boussinesq limit, of
course) follow nearly the same progression as the next-weaker case ðh� ¼ 0:3Þ in which the impinging primary
vortex effectively ‘‘bounces” off of the density interface, tearing off and pairing with a counter-rotating vortex
ring built from the density interface. These new rings in turn distort the surface and create more new rings with
circulation opposite to themselves. By t� ¼ 8, the h� ¼ 1:0 case has no fewer than six rings and the h� ¼ 3:0
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case has nearly ten. With a stronger density interface, these rings are formed at larger radii and are wound up
more tightly; though the overall dynamics are similar. The resulting motions bear remarkable similarity to the
experiments of Walker et al. ([49], Fig. 9) and Dahm et al. ([40], Fig. 8, 18, 26, 27, and 33).

A curious instability appears in the latest stages of the h� ¼ 3:0 case. It manifests as an azimuthal pertur-
bation of the original vortex ring, seen in Fig. 10 and identifiable in the time series in Fig. 9. This Crow-type
instability has been attributed to rapid distortion of the secondary vortex ring by the strain induced by the
strong and more stable primary vortex ring [61,52]. The same instability may be responsible for the rapid onset
of turbulence in high Reynolds number jet flow [62]. It is unclear whether any of the nearby secondary vortex
rings are responsible for this. The wavelength at t� ¼ 9 is k 
 0:5D, or k 
 2:5 dPeskin, which is much smaller
than the most-perturbed wavelength in the Kelvin–Helmholtz instability ðk 
 7 dPeskinÞ but similar to that
observed in experiments of a sphere impacting a wall [53] (where k 
 0:4D). The secondary instabilities that
were observed in the viscous vortex particle simulations in Liu [47], however, were the result of an initially
perturbed vortex ring.

While this instability appears in experiments [40,49,52,53,63] and viscous simulations [50,51,53] of vortex
ring impacts with a wall, it is not known to have been demonstrated for an inviscid vortex ring impacting
on a density interface. The reason that an inviscid simulation can exhibit behavior only previously seen in vis-



Fig. 10. Vortex sheet (left) and vorticity magnitude (right) for h� ¼ 3:0; t� ¼ 9; x–y plane, d� ¼ 0:2; jx�j > 10 is black; showing onset of
Crow-type instability normally associated with impact of viscous vortex ring on a wall.
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cous flow is that, like a no-slip wall, the inviscid baroclinic interface can generate counter-vorticity that can be
pulled away from the ‘‘wall” and eventually become enveloped in the primary vortex ring, thus initiating the
azimuthal instability. Theory and details concerning this instability can be found in Swearingen et al. [51]. The
interaction of a vortex and a contaminated free surface also exhibit this type of behavior [42].

The penetration distance of the vortex sheet appears in Fig. 11. Unlike the results in Dahm et al. [40], the
penetration distance in the present work is not measured along the vortex ring axis, but instead represents the
minimum vertical node location of the entire computational surface. Additionally, to quantify any significant
rebound, the maximum vertical node location was also tracked. This figure plainly shows the transition in pen-
etration distance that occurs between h� ¼ 0:1 and h� ¼ 0:3. Also obvious is that the range of values from min-
imum to maximum position is narrower for stronger stratification. The only real surprise concerns the larger
rebound of the h� ¼ 0:1 and h� ¼ 0:3 cases. As mentioned earlier, this large and early rebound is due to the the
upward-moving oppositely-signed vorticity generated on the inside of the cavity and the inability of the pri-
mary vortex ring to suppress its rebound. It is also likely that the h� ¼ 0:03 case would have rebounded sim-
ilarly had it run longer. From the maximum penetration vs. h� data in Fig. 12, it is clear that the initial
downward motion of the interface scales logarithmically with h�. This representation of the data also illus-
trates the same conclusion drawn from ([40], Fig. 20): that there is a sharp transition from strong dependence
on h� to relatively weak dependence.

The center of vorticity for each run was tracked and the results appear in Fig. 13. Note that for cases with
multiple vortex rings, this is not the center of the strongest ring, but simply the center of mean magnitude in
the radial and vertical directions. In all cases with h� 6 0:1 the primary vortex ring penetrated the surface and
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did not begin its return by the time the simulation ended. The h� ¼ 0:1 case, being the most strongly-stratified
case that still allowed the vortex ring to fully penetrate, also exhibited the greatest reduction in vortex ring
radius. In the cases with h� P 0:3 the primary ring looped around nearby counter-rotating vortex rings at near
the level of the initial density interface. The single loops taken by the center of vorticity in the h� ¼ 1 and
h� ¼ 3 cases correspond well to the trajectory of the primary ring from Walker et al. ([49], Fig. 11) for
Re > 2000.

The kinetic energy, enstrophy, and total circumferential circulation all appear in Fig. 14. For the most part,
the performance is as expected: larger h� translates to greater enstrophy e and faster reduction of circulation C.
The oscillations of all three flow quantities also increase in frequency for larger h�. The kinetic energy, though,
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Fig. 13. Position of center of vorticity of vortex ring for normal impact cases, one-layer interface with various h�; d� ¼ 0:2.
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shows more interesting behavior. The drop in kinetic energy is most rapid for the h� ¼ 0:3 case, and less rapid
as h� strays from 0.3. This is another indication that h� ¼ 0:3 represents a transitional case between a stronger
primary vortex ring and a stronger density interface. When either of the two greatly overpowers the other,
there is little incentive to dissipate energy: the vortex would effortlessly pass through the interface or the inter-
face would act as a wall and influence the vortex to grow radially before it gets close enough to pull any vor-
ticity away.

Computational requirements for the h� ¼ 0:1 case are representative of the rest of the simulations, and are
as follows. The number of elements ranged from 125,204 to 392,571, which required from 14.05 to 45.58 s on a
1.83 GHz AMD Athlon XP to interpolate vorticity onto the grid. One VIC solution on the 1203 grid took
from 14.67 to 208.47 s, but included a direct summation calculation for the free-space boundary conditions.

To validate the implementation of the method and to see how well the invisicd model captures the motion
of real fluids, when the viscosity is low, the head-on collision of the ring for the h� ¼ 0:1; 0:3 cases (Figs. 5 and
7) was compared to simulations using the full Navier–Stokes equations in an axisymmetric domain. The
method used is an axisymmetric version of the front-tracking method of Unverdi and Tryggvason [34]. The
code has been used to study several problems and a detailed description and validations can be found in
Han and Tryggvason [64,65]. The simulations were done in a domain of 3 by 6 ring diameters D, resolved
by a 256 by 512 uniform grid. The initial conditions were exactly the same as used for the fully three-dimen-
sional inviscid simulations. The viscosity was selected such that DqgD3=ðlCÞ ¼ 200.

Figs. 15 and 16 show the fluid interface and the vorticity at four times for the two cases. In each frame the
results from the inviscid simulations are shown on one side and the axisymmetric Navier–Stokes results are
shown on the other. The initial vortex sheet is included for the inviscid simulations, but only the density inter-
face is shown for the Navier–Stokes results. Dashed and solid contour lines are used for vorticity of the oppo-
site sign. Overall the solution is similar for the inviscid and the full Navier–Stokes cases, particularly at early
times. At later times the differences increase, as expected, when viscous diffusion leads to mutual annihilation
of vorticity of the opposite sign in the full Navier–Stokes case. The maximum depths of the fluid interface for
both cases, as computed using the inviscid method and the Navier–Stokes solver, are compared in Fig. 17.
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Obviously the agreement is good for the early times, although the results diverge at later times when the effect
of the viscosity become important. Simulations run with higher viscosities showed the solutions diverging ear-
lier as the viscosity is increases, as one would expect.
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transfer of energy between the vortex rings of positive and negative circulation that were created over the
course of the simulation. Further numerical experiments should be conducted to strengthen this hypothesis.
Finally, the total circumferential circulation for both cases is nearly identical for the duration of the simula-
tions, with a slight negative dip near the end of the thick interface simulation.

4.4. Summary

Above are presented results from inviscid simulations of vortex rings impacting normal to sharp and thick
density interfaces in the Boussinesq limit. The dynamics span a range from purely passive convection and
entrainment of the interface to immediate wall-like rebounding and strongly resemble the experiments in
Walker et al. [49] and Dahm et al. [40]. The similarity of the dynamics of a vortex ring impinging upon a wall
and a strong density interface (high h�) are noted in the experiments and simulations of [40].

In previous experiments and simulations of vortex-wall interactions, secondary and eventually tertiary vor-
tex rings arise from the no-slip condition. In the inviscid simulations presented, this secondary vorticity is the
result of baroclinic generation on the perturbed density interface. Regardless of it source, this secondary vor-
ticity is pulled away from the surface to join the primary vortex ring, and in the process can create tertiary
vorticity. In the limit of very high h�, the density interface behaves much like a wall and its deflection
approaches zero. It is obviously not identical to a wall, though, as vortex lines can end on a wall as long
as the total circulation on any circuit of the solid is zero. There is no wall in the above simulations, and no
vorticity extends to infinity, so all vorticity created on the interface due to perturbations must be connected
to itself, and any plane drawn through the interface must have constant circulation.
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5. Conclusion

The results presented above show that an inviscid vortex sheet method can be used for simulations of the
long-term, large-scale behavior of flows with weak density interfaces. This work combines elements of existing
vortex methods to allow simulations to run longer than was previously possible.

The vortex sheet is discretized using a connected mesh of triangles, and element strength is defined using
either vortex sheet strength or circulation depending on the stage of the calculation. This prevents errors
caused by explicit calculation of the vortex stretching term, and simplifies the inclusion of alternative vorticity
source terms. The remeshing method minimizes the number of elements needed to accurately describe the sur-
face, and does not allow excessive detail below the regularization length scale. A vortex-in-cell method speeds
the calculation of the velocity field and provides uniform regularization to the problem.

Avenues for future research include adapting the method to support curvature-based mesh refinement for
enhanced discretization accuracy, subdivision smoothing or local corrections [68] for reducing local velocity
errors, strong stratification, and surface tension. To perform simulations of flows of greater engineering inter-
est, such as fully turbulent flows, inclusion of an explicit subfilter-scale dissipation term may also be incorpo-
rated. Some of these topics are addressed in the first author’s dissertation [37] and others will be the subjects of
future research.
Acknowledgment

We thank Mr. Siju Thomas for doing the Navier–Stokes simulations discussed in Section 4.2.
References

[1] G. Birkhoff, J. Fisher, Do vortex sheets roll up? Rend. Circ. Math. Palermo Ser. 2 8 (1959) 77–90.
[2] D.W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. Lond. Ser. A 365

(1979) 105.
[3] R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech. 167 (1986) 65.
[4] A.J. Chorin, P.S. Bernard, Discretization of a vortex sheet, with an example of roll-up, J. Comput. Phys. 13 (3) (1973) 423–429.
[5] R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys. 65 (1986) 292–313.
[6] G. Tryggvason, W.J.A. Dahm, K. Sbeih, Fine structure of vortex sheet roll-up by viscous and inviscid simulation, J. Fluids Eng. 113

(1991) 31–36.
[7] P. Luchini, R. Tognaccini, Comparisons of a viscous and inviscid numerical simulations of the start-up vortex issuing from a semi-

infinite flat plate, ESAIM Proc. 7 (1999) 247–257.
[8] J.P. Christiansen, Numerical simulation of hydrodynamics by the method of point vortices, J. Comput. Phys. 13 (1973) 363–379.
[9] E. Harabetian, S. Osher, C.-W. Shu, An Eulerian approach for vortex motion using a level set regularization procedure, J. Comput.

Phys. 127 (1996) 15–26.
[10] C.K. Birdsall, D. Fuss, Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulations, J. Comput. Phys. 3 (1969) 494–511.
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